R(x)=-20x^2+1400x+36000

Simple and best practice solution for R(x)=-20x^2+1400x+36000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for R(x)=-20x^2+1400x+36000 equation:



(R)=-20R^2+1400R+36000
We move all terms to the left:
(R)-(-20R^2+1400R+36000)=0
We get rid of parentheses
20R^2-1400R+R-36000=0
We add all the numbers together, and all the variables
20R^2-1399R-36000=0
a = 20; b = -1399; c = -36000;
Δ = b2-4ac
Δ = -13992-4·20·(-36000)
Δ = 4837201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$R_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1399)-\sqrt{4837201}}{2*20}=\frac{1399-\sqrt{4837201}}{40} $
$R_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1399)+\sqrt{4837201}}{2*20}=\frac{1399+\sqrt{4837201}}{40} $

See similar equations:

| +4y=56 | | x+7x/10=90 | | x2+2x=23 | | (5t+t)^2=0 | | 4x^-372x-228=0 | | 2a^2-4a-7a+2a^2+6a-14=0 | | 9(x+13)=x-45 | | -3x+2|5+1=-5x|6 | | 2a^2+2a^2=0 | | 5x-32=75/98 | | x+x/3+2x=90 | | a(a^2)=0 | | 2n+n/2=15 | | -3x+2/5+1=-5x/6 | | (a+2)(a^2-3a-7)=0 | | x^2=-0.49 | | 4x^2+38x-75=0 | | (a+2)(a2-3a-7)=0 | | 4/128=x/28 | | 28+6y=-14 | | (a*2)=0 | | 0.8=0.5+0.55-x | | x-31=9(x+9) | | 7/11=(x/6) | | x+1/3x+2x=90 | | (p-3)(p+5)=0 | | 5n^2-3n=2 | | 14x-8=8x-44 | | x+x+.5x+.25x=300 | | 15^-5x=3 | | 2(x-3)-1=3(x+2)-14 | | x^2+8x+6=3x+2 |

Equations solver categories